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Abstract  In this work, a flat pressure bulkhead reinforced by an array of beams is designed
using a suite of heuristic optimization methods (Ant Colony Optimization, Genetic Algo-
rithms, Particle Swarm Optimization and LifeCycle Optimization), and the Nelder-Mead
simplex direct search method. The compromise between numerical performance and com-
putational cost is addressed, calling for inexpensive, yet accurate analysis procedures. At this
point, variable fidelity is proposed as a tradeoff solution. The difference between the low-
fidelity and high-fidelity models at several points is used to fit a surrogate that corrects the
low-fidelity model at other points. This allows faster linear analyses during the optimization;
whilst a reduced set of expensive non-linear analyses are run “off-line,” enhancing the linear
results according to the physics of the structure. Numerical results report the success of the
proposed methodology when applied to aircraft structural components. The main conclu-
sions of the work are (i) the variable fidelity approach enabled the use of intensive computing
heuristic optimization techniques; and (ii) this framework succeeded in exploring the design
space, providing good initial designs for classical optimization techniques. The final design
is obtained when validating the candidate solutions issued from both heuristic and classical
optimization. Then, the best design can be chosen by direct comparison of the high-fidelity
responses.
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1 Introduction

Cabin pressurization has made it possible for aircraft to fly under different weather conditions
and landscape formations, thus giving a significant contribution to air travel safety. From the
structural viewpoint, the pressurized cabin of a modern aircraft is a system of sealed pressure
vessels containing an atmosphere near to that of sea level. Its functional requirements include

[1]:

the transmission of internal and external flight loads;

the necessity for non-structural cutouts such as doors and windows;
an efficient shape for both aerodynamics and space allocation; and
minimum structural weight.

More specifically, devices called pressure bulkheads close the extremities of pressurized
cabins. These bulkheads are designed to blow first should the cabin pressure become too high
as opposed to that of the main fuselage of the aircraft. At this point, additional complexities
in systems and structures have to be taken into account, such as those involved in bearing the
pressure loads and performing and controlling the air flow associated with pressurization.
According to Niu and Niu in [2], pressure bulkheads should have a dome-like structure in
preference to a flat one. It is also known, however, that some requirements, mostly related to
space availability, impose the adoption of the flat geometry. The importance of this distinction
is due to the completely different mechanical behaviors of each of these configurations.

A curved dome ideally tends to support the lateral pressures developed at its curved walls
by tensile stresses alone. These stresses, called membrane stresses, occur in tangential direc-
tions at each point and are called membrane stresses. In reality, some amount of bending
stiffness also occurs, leading to the development of flexural (tension + compression) stress
fields. Such behavior becomes prevalent as the surface of the bulkhead goes flat. The true
bulkheads will lie somewhere in-between the curved and flat types, and will possibly include
these two extremes. Maximum efficiency could be obtained by minimizing the departures
from the total membrane stress system.

It is easy to see that the enormous challenge involved in performing a design optimization
of pressure bulkheads calls for advanced techniques of numerical optimization. Venter and
Sobieszczanski-Sobieski in [3] discussed that in recent years non-gradient nature based, prob-
abilistic search algorithms (which generally mimic some natural phenomena) have attracted
much attention from the scientific community due to features such as easiness to code, ability
of handle non-continuous functions, capability of using parallel architectures, and the trend
of finding the global, or near global, solution. Even though the large number of function
evaluations required by these methods often presents a drawback when compared with clas-
sical gradient-based algorithms, advances in computational throughput have helped to use
this class of algorithm in real world problems, as can be seen in Venter and Sobieszczanski-
Sobieski [4] and Viana et al. [5]. At this point, the concept of multi-fidelity approximations
[6-9] presents an interesting alternative to reduce the computational effort required during
the evaluation of the objective function, while preserving an acceptable fidelity level. In this
technique, the advantages of high-fidelity and low-fidelity models are used in an optimi-
zation process. The high-fidelity model provides solution accuracy while the low-fidelity
model reduces the computational cost. Giunta et al. in [6] used variable complexity (or fidel-
ity) response surface modeling in the wing design of a high-speed civil transport aircraft to
overcome computational expense. They used low, medium and high fidelity aircraft analysis
methods in that low fidelity methods include algebraic expressions for estimating lift and
drag, medium fidelity methods include linear theory aerodynamic analyses, and high fidelity

@ Springer



J Glob Optim (2009) 45:427-449 429

methods include Navier-Stokes equations. Vitali et al. in [9] used this concept to combine
a high fidelity analysis model with a low fidelity model to calculate the crack propagation
constraint in the design optimization process. Correction response surfaces were employed
to relate the high fidelity models to the low fidelity models. The authors concluded that the
multi fidelity approach was found to be more accurate than the single fidelity response surface
method at the same computational cost.

The present work presents two main contributions. The first one is the optimal design of a
totally flat pressure bulkhead. The second contribution is the use of multi-fidelity approxima-
tions combined with heuristic optimization methods in the solution of a real world problem.
The authors aimed at testing heuristic methods in real world applications, and to take advan-
tage of the robustness found in these techniques to handle the design optimization of the flat
pressure bulkhead. The remaining of the paper is organized as follows. Section 2 reviews
the theory behind and presents the numerical modeling of the pressure bulkhead. Section 3
discusses the variable-fidelity approach. Section 4 presents the optimization algorithms. Sec-
tion 5 gives details about the case study. Section 6 exposes the results and discussions. Finally,
the paper is closed by recapitulating salient points and concluding remarks.

2 Using plates for the design and analysis of aircraft pressure bulkheads

Although numerical models are actually used to account for specific geometries and boundary
conditions, this section will pursue an analytical development that describes the mechani-
cal behavior of plates in bending, aiming at achieving the insight necessary to implement
and interpret the results of an optimization procedure devoted to the design a flat pressure
bulkhead.

As discussed by Przemieniecki in [10], ideal plates can be understood as the two-dimen-
sional counterparts of the beams, since they resist transversal loads by bending and shear
stresses, without mechanical action at the neutral surface. Referring to Fig. 1, consider the
initially flat plate being actuated by bending moments (per unit length) M, and M\, and
also by twisting couples (Myy, = —M,y,). As in the case of beams, the curvature (second
derivative of the displacement w with respect to the spatial coordinates x and y) and the
applied moments are related to each other by the bending stiffness (product of the axial
elasticity modulus Eby the area moment of inertia /). Thus, considering that for a unit width
plate / = 3/12 and that the Poisson (v) effect induces a negative curvature at the plane
perpendicular to the bending axis:

2w 12

oz =g (Mc—v-My)

2w 12 M
a—yz:ﬁ-(My—v-Mx)

Equation (1) is usually rearranged such that the moments are expressed as functions of
the curvature:

92w 92w
Mx:D' 72+U72

dx d
92w 82yw &
My:D'(aTz“'W)
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(a) membrane stresses (b) plate in bending

Fig. 1 Plate under stress and in bending

Fig. 2 Plate in bending under the action of transversal loads

where the generalized stiffness D is given by:

E-13
12

D =

(1=v?) 3)
Analogously, the twist of the element (change in x-direction slope per y-direction unit
distance) can be expressed as in Eq. (4), as demonstrated by Den Hartog in [11]:

92w

Myy=D-(1-v)- “

dx - dy

Besides relating moments to curvatures in pure bending, consider the superposition of
shear forces (Q) and transverse pressure (¢) as indicated in Fig. 2.

Due to these additional lateral loads, the bending and twisting moments vary along the
plate, giving rise to:

0. _ OM  OMy
L
Y ay ox
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By summing the moments about x and y axis, and similarly, by adding up the forces along
the axis perpendicular to the plate, one obtains:

_90c , 90
ax ay

6)

Finally, by eliminating all internal forces (M, My, My, O, and Q, ) in the above equa-
tions, it is possible to find the relation between the transverse pressure q and the transverse
deflection field (w), accounting for the stiffness D:

w  d*w 8% w q -
ot Tt T oy D @

In a typical plate bending analysis, the highly non-linear Eq. (7) is integrated for a spec-
ified set of boundary conditions. The resulting displacement field can then be fed back into
Eqgs. (2)—(5) to recover the stresses and internal forces.

Equation (7) highlights the dominance of the bending stiffness in resisting the transversal
pressure load. Using a thicker web for the bulkhead increases the bending stiffness, although
this may not be the most effective choice with respect to structural weight. The choice of
higher reinforcement beams is potentially better, albeit subject to space availability con-
straints in the direction perpendicular to the bulkhead web. Less efficient, but still capable
of contributing somehow, the width and thickness of the reinforced beams could also be
manipulated to increase the overall bending stiffness. A suitable compromise combining all
of these potential design variables could lead to an optimum design.

For a more realistic analysis, it should be considered, however, that when the carrying of
transverse loads entails large (more than a few tenths of the plate thickness) deflections in the
same direction (see Fig. 3), the plates deform into curved surfaces, giving rise to mid-surface
stresses, not considered in the derivations from Eqgs. (1)—(7). Still, the edge supports resist
the in-plane movements of the plates, leading to further membrane (mid-surface) action.

All in all, the already highly non-linear relation expressed in Eq. (7) needs to be further
complicated by the inclusion of mid-surface stresses for an accurate consideration of the
effects involved in the mechanical analysis of a flat bulkhead. Besides, the exact boundary
conditions needed to integrate it are unclear, since the plate restraints are elastic.

(a) undeformed (b) deformed

Fig.3 Post-processing displacements indicating large deflections at a pressurized flat bulkhead reinforced by
beams
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From the analysis point of view, all previous discussion justifies the use of non-linear
finite element modeling to deal with such complex calculations. On the other hand, within
a design optimization framework, several analyses are required iteratively and, due to their
usually high computational cost, a feasibility obstacle can arise. In this scenario, the next
sections are devoted to the discussion of aspects relative to the use of optimization techniques
in the context outlined so far.

3 Variable fidelity models applied to optimization in engineering
For the purposes of the present work, the optimal design problem is stated as the nonlin-

ear, constrained problem of finding the point in the design space, x*, that will minimize the
objective function (or vector of objective functions) for a given set of system parameters [12]:

x* = arg (min f (x)) 8)
subject to:
lfxifx;‘, i=12,...,n40
8j x)<0 =12 ..., Ninegcnstrt ©)
/’lj(X):O J=m+1,m~+2, ... fensert
where:

o f(x) = [ fix) LX) ... fngbj (x)]T is the vector of objective functions. This vector is
composed by objective functions that can eventually support but more commonly conflict
with each other.
xf <x; < xlf‘ imposes the side constraints to the design space, and
g;j(x) and & (x) are the inequality and equality constraints, respectively.

In engineering problems, high-fidelity models are typically time consuming and computa-
tionally expensive. As a result, the computational cost of complex high-fidelity engineering
simulations often makes it impractical to rely exclusively on simulation for design optimi-
zation [13]. For this reason, the use of surrogates models (also known as meta-models or
approximations) to represent the functions involved in an optimization problem has become
an established approach [14,15]. The statistical procedure used to generate them can be
summarized as follows:

1. Formulate the problem: which includes establishing the goals of the investigation, identi-
fying the key independent variables and responses and if possible, postulating of a model
that relates these variables.

2. Design of experiments: the design space is sampled in order to reveal its contents and ten-
dencies [16]. At this step, the gain of as much information as possible must be balanced
with the cost of simulation/experimentation.

3. Choice of surrogate model: the nature of the surrogate itself is determined, tacking into
account that the relations contained in the data gathered in the previous step have to
be represented, with the highest possible accuracy. Besides the traditional Polynomial
Response Surface (PRS) [17, 18], more sophisticated and more expensive surrogates have
become popular. Surrogates such as Radial Basis Neural Networks (RBNN) [19,20],
Kriging models (KRG) [21], [22], and Support Vector Regression (SVR) [23,24] that
require optimization in the fitting process, increasingly replace PRS, which only requires
the solution of a system of linear equations.
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4. Model fitting: the model whose shape is defined in “3” is fitted to the data collected in
‘42’3.

5. Assess quality of fit: the precedent steps are sufficient to build a first tentative model,
which overall quality and usefulness has to be evaluated by adequate sets of metrics
[17,21], and [25].

Even though surrogate models alleviate the use of optimization techniques, constructing
them may still require that a significant number of analyses be performed. When high fidel-
ity analysis results are used in constructing surrogates, the computational cost associated
with generating them becomes huge as the number of design variables increases. On the
other hand, if low fidelity analysis results are used in constructing surrogates, then accuracy
becomes a problem. Under these conditions, a multi-fidelity approach can be used to reduce
the computational cost and to produce acceptable accuracy [6-9]. The framework used to
vary the fidelity is graphically represented in Fig. 8.

The following rationale describes how different fidelity levels are used in optimization; it
should further clarify the purposes of the variable fidelity approach:

1. Direct coupling of the optimizer and high fidelity analysis: this might be the most accurate
approach due to the high fidelity. Moreover, it does not have statistical fitting limitations,
since the optimizer and the analysis module are linked directly, and not by means of a
surrogate. However, the computational overhead and the possibility of numerical ill-con-
ditioning often prevent this approach from being applied.

2. Coupling of the optimizer and a statistical surrogate of the high fidelity analysis: in view
of the drawbacks of the previous approach, a very common alternative is coupling the
optimizer to a statistical surrogate of the high fidelity analyses. This alternative has the
potential to reduce computational cost and improve the numerical conditioning. There
is no fidelity problem, since the surrogate is constructed through the high fidelity data.
However, statistical fitting problems may appear, mainly with global regression approx-
imations.

3. Coupling of the optimizer and the low fidelity analysis: in another scenario, if the opti-
mization is performed directly over the linear models, lack of accuracy due to their
low fidelity may occur. This approach would be advantageous from the viewpoint of
computational cost and absence of statistical inaccuracies, since surrogates are not used.

4. Coupling the optimizer and variable fidelity analyses: weighting the strengths (low com-
putational cost, fidelity accuracy and statistical accuracy) and the weaknesses (long run-
times, low fidelity and statistical limitations) that characterize one or another of the
previous approaches, variable fidelity can be the most suitable strategy:

(a) Low fidelity analysis is coupled directly to the optimizer, ensuring faster computa-
tions and lack of statistical inaccuracies.

(b) The surrogate that is constructed is not intended to model the design space, but to
model the error between two homologous spaces, for the same quantity evaluated
at different fidelity levels. Statistical inaccuracies may occur with surrogates of a
given response because all the points used to construct it have to be, in principle,
uncorrelated. For modeling the error, the situation is much more advantageous,
since a natural correlation arises from the fact that the error results from different
computations held at the same point. As an effect, surrogates for the error tend to
be more accurate for a given number of design variables and sampled points.

Table 1 summarizes the previous discussion.
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Table 1 Comparison of different approaches to use analysis in optimization. It can be observed that although
high fidelity analysis presents the best accuracy, it may imply in numerical obstacles for the optimization,
such non-linearities and difficult gradient calculation. On the other hand, the use of low fidelity may hurt the
accuracy level. Thus, the direct use of surrogates and variable fidelity appear as the most suitable strategies in
optimization

Approach Computational cost  Fidelity related accuracy ~ Numerical conditioning
1 High fidelity Highest Highest Worst

analysis
2 Surrogate of the In general,

high fidelity Lowest problem Best

analysis dependent
3 Low fidelity Intermediate Low Acceptable

analysis
4 Variable fidelity — Intermediate In general, Acceptable

acceptable

Correction surrogates couple high-fidelity and low-fidelity methods of analysis at a num-
ber of points in the design domain. In this work, the surrogate for the difference between the
analyses is used. The process starts with high and low-fidelity computation of the response
of interest, f(x), at different p points. At these points, the difference, 6 (x):

8(x) = fur(x) — fLF(X) (10)

is computed. The subscripts H F and LF indicate the value of f(x) obtained from high-
fidelity and low-fidelity models, respectively.

In the context of this paper, low fidelity analysis means the use of relatively coarse meshed
linear static finite element models, such as those usually intended for global structural analy-
sis (for determination of load paths accounting for the stiffness of the structural components).
In this case, the bulkhead web is represented by plate elements and the reinforcements by
beams. In opposition, high fidelity calculations are performed with much more refined mod-
els, suitable for non-linear static analyses. In this case, all details are represented by plate
elements, including the reinforcing beams.

The next step is to build the surrogate model B (x) for 8(x). Here, there is no surrogate
model to be preferably used. The variable-fidelity approximation to f(x) at any other point,
X, is obtained from a low-fidelity analysis as:

f&) =5 + fLrx) (11)

In the variable fidelity scenario, the use of low fidelity models has to be maximized, so that
they are used only at the core of the calculations needed for the optimization procedure. On
the other hand, the use of high fidelity analyses is kept to a minimum, i.e. just the necessary
to fit §(x).

Once the correction surrogates are built, the optimization problem can be solved by using
an adequate algorithm. The common practice is to use classical gradient-based algorithms
[6-9]. It means that the optimizer receives the values of the functions at the point plus those
used for obtaining gradient information from the lower-fidelity model to build internal local
models used during the optimization task (e.g. Taylor series). On top of that, in order to avoid
issues with local minima, starting the optimizer with different initial design is also a common
practice. In terms of low-fidelity simulations, the total cost of this approach is a function of
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the number of variables (related to the cost of the gradient computation) and the number of
iterations of the optimization task.

In this work, the use of heuristic nature-inspired optimization algorithms is proposed. The
main reasons are the following:

e They do not require gradient information: which implies that the resources can be directly
used for the search, and that there is no propagation of the errors due to the computation
of the gradients based on corrected responses (problem reported in [26]).

e They have the trend to find the global or near global solution: which reduces the need of
running multiple times the optimization task.

In addition, in order to complete the heuristic optimization, a Nelder-Mead simplex direct
search (NMSDS) [27] is employed with initial designs given by the candidate solutions of the
heuristic optimizers. NMSDS also does not use numerical or analytic gradients. A simplex
in the n4,-dimensional space is characterized by the ng4, + 1 distinct points in its vertices
(e.g., if ngy = 2, a simplex is a triangle). At each step of the search, a new point in the
neighborhood of the current simplex is generated. One of the vertices is replaced by this new
point if the new function value is smaller than the values at the vertices of the simplex (which
generates a new simplex). This step is repeated until the diameter of the simplex is less than a
specified tolerance. The MATLAB fininsearch function (set with the default options) is used
as implementation of the NMSDS algorithm. This cascade-type scheme using a heuristic
algorithm for global search and a classical algorithm for local search is believed to reduce
the changes of fail because of local minima.

4 Nature-inspired optimization methods

In this work, a suite of heuristic methods is employed to solve the design optimization prob-
lem of aircraft structural components. Ant Colony Optimization, Genetic Algorithms, Particle
Swarm Optimization (PSO) and LifeCycle Model (LC) are the approaches used to perform
this case study. These methods are briefly reviewed below.

4.1 Ant colony optimization (ACO)

ACO was introduced by Marco Dorigo in his doctoral thesis in 1992 [28]. ACO is inspired in
the behavior of real ants and their communication scheme by using pheromone trail. When
searching for food, real ants start moving randomly, and upon finding food they return to
their colony while laying down pheromone trails [29]. This means that if other ants find
such a path, they return and reinforce it. However, over time the pheromone trail starts to
evaporate, thus reducing its attractive strength. When a short and a long path are compared,
it is easy to see that a short path gets marched faster and thus the pheromone density remains
high. Consequently, if one ant finds a short path (from the optimization point of view, it
means a good solution) when marching from the colony to a food source, other ants are
more likely to follow that path, and positive feedback eventually encourages all the ants
in following the same single path. ACO follows some basic concepts, as presented below
[28,29]:

e A search performed by a population of ants, i.e., by simple independent agents.
e Incremental construction of solutions.
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s A
Define ACO parameters (population size, initial
pheromone trail, dissolving rate)

v

Create initial population, randomly distributed
throughout the design space (other distributions
can be performed)

A 4

Update pheromone trail

v

Update values of the design variables for the
whole population (which mimics path between
the nest and the food source)

v

Evaluate objective function and take it as a path
length measure of each individual

Stop criterion

Y

Results

Fig. 4 ACO basic algorithm

e Probabilistic choice of solution components based on stigmergic information of phero-
mone. A stigmergic process is the process through which the results of a worker insect’s
activity act as a stimulus for further activities.

e No direct communication between ants.

ACO has attracted much attention from the research community due to its efficiency in
solving combinatorial optimization problems, such as the routing problem in a computer
network [30] and more recently continuous problems, such as in the design of vibration
damping devices [5].

The outline of a basic ACO is as shown in Fig. 4.

More details about ACO are provided by [5], and [28-30].

4.2 Genetic algorithm (GA)

GA is an optimization algorithm used to find approximate solutions to difficult-to-solve prob-
lems through the application of the principles of evolutionary biology to computer science.
GA is based on Darwin’s theory of survival and evolution of species [31-33]. GA uses biolog-
ically-derived concepts such as inheritance, mutation, natural selection, and recombination
(or crossover). Due to the vast literature on GA, for the sake of simplicity, just an overview
is provided in this text.

The algorithm starts from a population of random individuals, viewed as candidate solu-
tions to a problem. During the evolutionary process, each individual of the population is
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( )

Define GA parameters (population size, selection
method, crossover method, mutation rate, etc.)

\ * J

Create initial population, randomly distributed
throughout the design space (other distributions
can be performed)

Y
»

A 4

Select mates to the crossover (this mimics the
natural selection)

v

Reproduce and replace the worst individuals in
the population by the offspring

!

Mutate, to avoid premature convergence (other
parts of the design space are explored)

v

Evaluate objective function for the new
individuals and take it as a fitness measure

Stop criterion

A 4

| Results

Fig. 5 GA basic algorithm

evaluated, reflecting its adaptation capability to the environment. Some of the individuals
of the population are preserved while others are discarded; this process mimics the natural
selection in Darwinism. The members of the remaining group of individuals are paired in
order to generate new individuals to replace those that are discarded in the selection process.
Finally, some of them can be submitted to mutation, and as a consequence, the chromosomes
of these individuals are altered. The entire process is repeated until a satisfactory solution is
found. The outline of a basic GA is as shown in Fig. 5.

Although the initially proposed GA algorithm was dedicated to discrete variables only,
nowadays improvements are available to deal with discrete and continuous variables. See
[31-33] for further details.

4.3 Particle swarm optimization (PSO)

PSO was introduced by Kennedy and Eberhart in [34], as emerged from experiences with
algorithms inspired in the social behavior of some bird species. Consider the following sit-
uation: a swarm of birds searching for food around a delimited area. Suppose there is just
one place with food and the birds do not know where it is. The success of one bird is shared
by the whole swarm (learning from the experience of other individuals). In this sense, the
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4 )

Define PSO parameters (population size, inertia,
trust parameters, etc.)

!

Create initial population, randomly distributed
throughout the design space (other distributions
can be performed)

Y
P>

y

Update velocity vector for each individual

¥

Update position of each individual

!

Evaluate objective function and take it as a
fitness measure of each individual

Stop criterion

Fig. 6 PSO basic algorithm

adjustment between exploration (the capacity of individual search) and exploitation (taking
advantage of someone else’s success) is required. If there is little exploration, the birds will
all converge on the first good place encountered. On the other hand, if there is little exploi-
tation, the birds will slowly converge or they will try to find food alone. It is clear that the
best policy is a trade-off between both policies.

In PSO, the flight of each bird (individual of the population) is modeled by using a velocity
vector, which considers the contribution of the current velocity, as well as two other parts
accounting for the self-knowledge of the individual and the knowledge of the swarm (herein
referred to as population) about the search space. This way, the velocity vector is used to
update the position of each individual in the population [3,4], and [34]. An outline of a basic
PSO algorithm is shown in Fig. 6.

PSO is comprehensively presented in [3,4], and [34].

4.4 Lifecycle model

LC is a hybrid nature-inspired optimization method inspired by the idea of life cycle stages,
initially proposed by Krink and Lgvberg in [35]. From the mathematical point of view, natural
algorithms such as GA, PSO and ACO are heuristic search methods of proven efficiency as
optimization tools. LC is intended to put together the positive characteristics found in each
method and creates a self-adaptive optimization approach. Each individual, as a candidate
solution, decides based on its success if it would prefer to belong to a population of a GA,
to a swarm of a PSO, or to a colony of ACO. This means that various heuristic techniques
contribute to form a robust high performance optimization tool. The idea is that complex
problems can be conveniently considered from the optimization viewpoint. As can be seen,
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e N\
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m Heuristic#1 % €
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Fig. 7 LC basic algorithm

the less successful individuals must change their status in order to improve their fitness. This
means that the optimization approach does not follow a rigid scheme, in which various tech-
niques are used sequentially in a cascade-type structure. In other words, it is the mechanism
of self-adaptation to the optimization problem that rules the procedure. A LC outline follows
in Fig. 7.

Since the algorithm is composed by various heuristics, it is necessary to set the parame-
ters of every heuristic used in the LC. Nevertheless, there is a parameter inherent to the LC,
namely the number of iterations that represent a stage of the LC, known as stage interval. At
the end of each stage interval, the less successful individuals must change their stage in order
to improve their fitness. To close the definition, LC stages must be presented. In the present
work, two heuristics are used as stages, namely the GA and the PSO. Other versions of the
LC can be proposed by considering other heuristics and a mix of them, as shown in [35].

To learn more about LifeCycle see [35] and [36].

In terms of implementation, all the nature-inspired approaches tested in the work have a
common feature, namely, they are highly flexible and robust general frameworks. The SIM-
PLE Optimization Toolbox [37], a toolbox developed at Federal University of Uberlandia
as an add-on to MATLAB, provides implementation for the algorithms used to handle the
optimization problem.
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Table 2 Pressure bulkhead

o ‘Web material Al2024
description

Number of horizontal reinforcement beams 3

Number of vertical reinforcement beams 5
Reinforcement beams material Al 7050
Pressure differential Equivalent to 30,000 ft

Table 3 Design variables values normalized by the bulkhead diameter. Normalization makes the design
variables non-dimensional. This is done to preserve interests in the technological content of this work

Design variable Lower bound Baseline Upper bound
x1 : width of reinforcement beams 0.01 0.02 0.03

x7 : height of reinforcement beams 0.040 0.05 0.06

x3 : thickness of reinforcement beams 0.0008 0.0012 0.0016

x4 : web thickness 0.0008 0.0012 0.0016

Table 4 Baseline design response values selected to participate of the optimization problem statement

Response Baseline value Target value

f1(x): ratio of maximum tension stress at the 1.01 0.8
reinforcement beams with respect to allowable

Jf>(x): ratio of minimum compression stress at the 0.85 0.68
reinforcement beams with respect to allowable

f3(x) : web maximum misplacement, normalized 0.116 0.928
with respect to the bulkhead diameter

Jf4(x) : maximum limit tension stress with respect to 0.19 0.15
yield limit

f5(x) : pessure bulkhead Mass 22.5635 18.0508

5 Case study: Numerical optimization of a pressure bulkhead

The optimization framework based on heuristic methods and on variable fidelity analyses,
outlined in Sects. 4 and 3, is tested through a case study focused on a flat reinforced pressure
bulkhead, as described in Sects. 1 and 2.

Tables 2, 3 and 4 contain useful design data, such as the general information about
the pressure bulkhead; design variable descriptions and their respective design space spec-
ifications; and finally, response descriptions and respective values for the baseline design
and target design as well. All this information is important for the good understanding and
definition of the optimization problem.

In order to keep the computational cost low (in terms of low-fidelity simulations), instead
of a multi-objective approach for generating the Pareto front, the responses are combined into
a functional whose minimization implies that all responses tend to a target value and depart
from a non-desirable one. This simplifies the solution of the problem and can be considered
acceptable given the general scope of this work. The formulation is shown in Eq. (12). The
target and avoidable values are not necessarily design goals, but play an important role at
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Fig. 8 Variable-fidelity optimization framework

the optimization problem by defining the tendency of the desired optima with respect to
the baseline design. This scheme is known as Compromise Programming, better described
by Vanderplaats in [12]. In the context of the present work, it is a useful approach since
the nature-inspired optimization techniques are defined for unconstrained and single-objec-
tive problems only. The final problem is expressed as the minimization of the following
functional:

Nobj 2
s - )
J(x) = ;(wl T = 1) (12)

where:

J (x) is a compromise objective function.

fi(x) is the i-th response of interest, in a total of n,p;.

f{(x) is the target value of the i-th response.

f7°"51(x) is the worst value accepted for the i-th response.

w; is the weighting factor applied for the i-th response of interest.

During the optimization task, each of the responses presentin Eq. (12) is calculated through
a linear static finite element analysis (low-fidelity) and corrected by the PRS that correlate
the result with the one obtained by means of non-linear finite element analysis (high-fidelity).

The sets of four design variables and five responses that describe the pressure bulkhead
modeling are listed in Tables 3 and 4, respectively. The target values were chosen to be
80% of those at the baseline design (since all of them are quantities to be minimized). The
bulkhead mass is set to be 2.5 times more important than the other responses (i.e. the weight
coefficients are w; = 1, fori = 1 — 4 and ws = 2.5). The baseline responses are chosen
as the worst accepted values, thus forcing the optimizer to move away from them in a clear
attempt to improve the design.

For the sake of simplicity, the variable fidelity is implemented with a second order PRS
model for the difference between the high and low fidelity analyses of responses f1(x) to
fa(x). Since f5(x) is the pressure bulkhead mass, it does not require any correction (its fidel-
ity does not depend on whether the calculations are linear or non-linear; eventually, small
differences may appear due to either rounding or truncation).

The samples for the regression are generated through a Central Composite Design (CCD),
which demands 25 finite element simulations (both linear and non-linear). Following the idea
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Table 5 Comparison of the adjusted correlation coefficients, Rf,, of the PRS models for the responses, f (x),

and for the correction surrogates, s (x) (the closer Rg is to 1, the better). It can be observed the success in using
variable-fidelity over the direct meta-modeling of the responses

Surrogate of the A Hx) Hx f4(x)
response 0.65 0.34 0.93 0.87

Correction H 1(x) 32 (x) 33 (x) 34 (x)
surrogate 0.99 0.96 0.982 0.952

presented in Fig. 8, most of the off-line computational effort is due to these runs, apart from
isolated validations. According to this procedure, the obtained PRS are shown in Eqgs. (13)—
(16):
81 (x) = —3.07513 4 1.57573x; + 0.75861x + 0.97382x3 + 0.23060x4
—0.41144x7 — 0.11233x5 — 0.23423x3
—0.18688x1x2 — 0.32223x1x3 — 0.23890x x4 — 0.14728x2x3 (13)
82 (x) = —5.09962 4 1.68555x1 + 1.33653x2 + 0.96027x;3

—0.63840x3 — 0.29912xx, (14)
83 (x) = —7.77607 + 0.41315x, + 5.39596x4 — 2.36998x7 (15)
84 (x) = —18.5759 — 2.6548x; — 1.2855x5 — 2.4576x3 + 6.3808x4

—1.2053x3 — 1.0776x1x3 (16)

Table 5 gives the comparison of the adjusted correlation coefficients, Rg, of the PRS mod-
els for the responses, f (x), and for the correction surrogates, $ (x).R(% primarily measures the
statistical accuracy of the PRS surrogates (the closer Rg is to 1, the better). As expected from
the theoretical analysis, it can be observed that (i) due to the non-linearities, it is worth using
the variable-fidelity framework over the PRS models of the responses; and (ii) the correction
PRS models adjust very well to the data. As a consequence, the estimated response values
(linear analysis + error correction) and the actual non-linear results have very close variation
in the case of all four responses of interest, as shown in Fig. 9. As a final verification, the
data corresponding to the 25 runs of the CCD was used to calculate two sets of correlation
coefficients, as shown in Table 6. All sets of data move in the same direction (positive correla-
tions) and, in general, the correlation is greater when the correction surrogates are used with
the linear results. Given that the correction surrogates have demonstrated good predicting
capabilities, it is now safe to perform the intended optimization procedures.

One of the aims of this work is to show the performance of the heuristic algorithms when
combined with variable fidelity in a real world problem. Given the random nature of the
algorithms used, results may vary from one run to another (or at least present slight differ-
ences). This way, in the first part of the study, each algorithm is tested 10times (each time
with different initial populations). The success of the algorithms in performing the initial
global search is observed if the results of these repetitions are close to each other. Table 7
shows the setup used for each of the heuristic optimization algorithms. Secondly, a set of
initial designs given by the heuristic methods fed the NMSDS in order to finish the local
search. Finally, one of the final designs is used to validate the results of the optimization
performed with variable fidelity analysis. This is done by checking the differences between
the uncorrected and corrected linear (low-fidelity) simulations with respect to the non-linear
one (high-fidelity).
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Fig. 9 Variation of actual and corrected values of responses f| (x) to fz (x). Actual responses are those
obtained through high-fidelity analyses and corrected response refers to those obtained through low-fidelity
analyses and correction PRS surrogates

Table 6 Correlation coefficients

Response Uncorrected linear to non- Corrected linear to non-
of non-corrected and corrected

. . linear correlation coefficients linear correlation
linear results with respect to - L
. coefficients (%) coefficients (%)
actual non-linear results. These
values show the improvement
capabilities of the correction f1®) 51,32 66,64
surrogates adopted on the fr(x) 28,94 79,28
variable fidelity framework £3%) 70,09 87.86
fa(x) 61,26 94,62

6 Results and interpretation

In the first part of the study, the performance and convergence of the heuristic algorithms
is tested Fig. 10 and Figure 11 shows an arbitrary run executed with each of them. They
help as an initial comparison basis to analyze the behavior of the used techniques. Figure 10
shows how the best, the mean and the standard deviation of the objective function values for
the population of ACO, GA and PSO evolve during the optimization procedure. Figure 11
illustrates the evolution of the LC along the iterations. Figure 11-(a) shows which heuristic
is conducting the optimization process at a given iteration. Fig. 11-(b) shows the transitions
due to its self-adaptation skills.

Given the random nature of the algorithms used, the profiles of Figs. 10 and 11 may
vary from one run to another (final results may also vary slightly). This way, for the sake of
the statistical analysis, each run was repeated 10times and the best, worst, average, standard
deviation and coefficient of variation of the results from each of the 10 repetitions were
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Table 7 Setup for heuristic

optimization methods General  Population size 50
Iterations 30
Stop criterion Maximum. number of
iterations
ACO Dissolving rate 1.25
GA Number of individuals for 2
elitism
Selection function simpleGASelectionRoulette
Crossover function simpleGACrossoverHeuristic
Crossover fraction 0.8
Mutation function simpleGAMutationUniform
Migration direction ‘forward’
Migration interval 20
Migration fraction 0.2
PSO Inertia (w) 1.4
Self trust (cy) 1.5
Swarm trust (¢p) 2.5
DT 1
Vmax 0.2
Mass extinction factor 0.975
Coefficient of Variation 1
Swarm Subset 0.2
Ny B B - E
% 3 \\ —+— StdDev. % 3 \ —+— StdDev % 3 \\ —+— StdDev.
T s oL\ s S
ERE '\-\A“W"":mm ERE ..&, § 15 m‘"“"*’mmmz
3 oA K g
o.j R MWW“\MM 0.2 . e n.z N
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
Iteration Iteration Iteration
(a) Aco (b) ca (¢) pso

Fig. 10 Sample of one run of the optimization for each basic algorithm. In all cases, it can be observed good
convergence both in terms of results (seen by the best value of the objective function) and in terms of the
dispersion of the population (seen by the mean and standard deviation of the objective function)

recorded. The average indicates the central tendency which the heuristic results tend to. The
standard deviation indicates the stability of the optimal solutions, measuring the degree of
convergence. In order to express this convergence degree regardless of the magnitude of each
of the responses, the coefficient of variation is calculated through the division of the standard
variation by the mean value of the optima. The average value for J (x) is the average of
values of the functional over the 10 runs; it does not correspond to the value obtained when
running the analysis with the average design. Table 8 reports this information for each of the
heuristic methods. The best and average results are shown in bold face. This table also shows

@ Springer



J Glob Optim (2009) 45:427-449 445

22
—%— LifeCycle
""" )
g 21 :
o T
2 =
2 2x 2
3 s
Q o)
o) e
) 1.9 g
% £
[ =
m 18 =4
1 7 L 1 L 1 1
5 10 15 20 25 30
Iteration Iteration
(a) best objective trace (b) number of individuals trace.

Fig. 11 Sample of one run of the optimization for the LC algorithm. Figure 11-(a) illustrates how GA and
PSO alternate in providing to LC the optimal solution. During the first 4 iterations, this is done by PSO, then
the solution is few times updated by GA. Figure 11-(b) shows how this process is reflects the split of the
population between GA and PSO. Since most of the time GA performs better than PSO, it can be observed
that the population trends to perform GA rather than PSO

that all algorithms converged fairly well. While GA achieved the best result, LC presents
better dispersion (smaller differences among the best, average and worst designs). This is an
evidence of the LC robustness, somehow expected, since LC is intended to take advantage
of multiple heuristics simultaneously and to reduce the bias of a poorly performed algo-
rithm. Altogether, Table 8 also indicates the success of all algorithms in pointing to a close
region of the design space. Table 9 shows what happens when running the objective function
with the average result found by each algorithm. The response values are all obtained by
linear analysis (low fidelity) and further on properly corrected. Indeed, despite the apparent
differences among the average values (which suggests some advantage for GA), the four
averages are statistically equivalent at a 95% significance level, since all of them belong to
the corresponding confidence interval that goes from 1.667 to 1.828.

In the second part of the study, the efficiency of heuristics in providing an initial guess
for a classical algorithm is tested. Table 10 shows the results when running another step of
optimization using NMSDS with initial designs as given by Table 9. All final designs present
even closer values for the design variables, individual responses and respective functional,
J (x). It means that indeed the initial designs were in a close region of the design space.

As seen in Fig. 8, the final step of the variable-fidelity approach is the validation of the
optimization outcomes. This is done by running the high-fidelity simulations using the opti-
mal design. Table 11 shows the results of an arbitrary run of the LC algorithm as performed
lonely (simulation #10) and the results of LC + NMSDS (as in Table 10). In general, the
non-linear and linear corrected simulations present just small differences for responses f1 (x)
to f1 (x) (f5 (x) is the pressure bulkhead mass and it does not depend on the level of fidelity).
The similar results (bold face in Table 11) show once again that the candidate solutions found
by the heuristic methods lay in a close region of the design space, where the optimal may
be. From the design viewpoint, the changes introduced by the optimizers seem to be sound
choices. Material has been removed from the web to the reinforcement beams, in a clear
effort to minimize the mass, which was given highest priority by means of the 2.5 weight-
ing factor in Eq. (12). Most important, the optimizers were capable of finding a design that
overall improved the involved quantities, despite their inherent conflicting nature. The small
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Table 8 Optimization results for all heuristic algorithms (performed lonely). All algorithms presented good
convergence. While GA presents the best “best solution,” LC presents the best dispersion measures, and as a
consequence, LC was shown to be the most robust. This is due to the LC ability in taking advantage of multiple

heuristics simultaneously

Algorithm Statistics

Design variable

Objective
function J(x)

x1x 1073 xp;x 1073 x3x 1073 xg x 1073
ACO Best 25 41.94 1.5 1.08 1.44
Average 24.96 40.19 1.5 1.03 1.73
Worst 24.96 39.4 1.5 1.02 1.76
StdDev 0.035 0.73 0.0001 0.02 0.10
Ccov 0.001 0.02 0.0001 0.02 0.06
GA Best 29.08 42.87 1.65 0.98 13
Average 26.70 38.37 1.63 1.00 1.67
Worst 22.5 47.4 1.47 1.06 1.9
StdDev 2.55 5.65 0.09 0.04 0.16
Cov 0.001 0.02 0.0001 0.02 0.06
PSO Best 24.89 41.35 1.49 1.07 1.47
Average 24.61 40.72 1.49 1.04 1.76
Worst 243 38.87 1.48 1.06 1.81
StdDev 0.42 1.59 0.007 0.03 0.10
Cov 0.02 0.04 0.005 0.03 0.06
LC Best 25.00 40.28 1.50 1.03 1.764
Average 24.62 40.47 1.5 1.04 1.774
Worst 24.38 41.05 1.5 1.05 1.785
StdDev 0.4 0.64 0.002 0.01 0.009
Cov 0.02 0.02 0.001 0.01 0.005

Table 9 Comparison of the average design and the corresponding responses for each algorithm. It can be
observed that the performance of the different algorithm is very close, with a small advantage for GA

Design Algorithm
ACO GA PSO LC
Design variables X1 X 1073 24.96 26.703 24.614 24.624
xy x 1073 40.191 38.367 40.717 40.473
x3 x 1073 1.5 1.625 1.49 1.499
x4 x 1073 1.03 1.003 1.038 1.036
Responses (linear corrected) f1(x) 0.96 0.92 0.96 0.96
fr(x) —-0.72 —0.66 —0.72 —0.72
f3(x) x 1073 109.42 109.44 109.23 109.28
fa(x) 0.18 0.18 0.18 0.18
f5(x) 21.56 21.82 21.60 21.6
Functional J(x) 1.77 1.67 1.78 1.77
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Table 10 Results obtained by NMSDS when using initial designs given by different heuristics. The similarities
of the final results confirm that the initial results were in a close region of the design space

Design Algorithm

ACO + GA + PSO + LC +
NMSDS NMSDS NMSDS NMSDS

Design variables x1 x 1073 29.93 29.96 29.93 29.94
Xy x 1073 33.06 33.04 33.04 33.04
x3 x 1073 1.73 1.73 1.73 1.73
x4 x 1073 0.96 0.96 0.96 0.96
Responses (linear corrected) f1(x) 0.89 0.89 0.89 0.89
fr(x) —0.67 —0.67 —0.67 —0.67
f3(x) x 1073 112.34 112.35 112.34 112.35
fa(x) 0.17 0.17 0.17 0.17
f5(x) 21.79 21.79 21.79 21.79
Functional J(x) 1.64 1.64 1.64 1.64

Table 11 Validation of the optimal designs given by LC and LC + NMSDS. The non-linear responses reveal
that the solutions are within a close region of the design space. In general, an improved in the quantities is
observed (the small increase in the displacement is secondary in view of the improvements observed in the
other responses)

Design Response

N LK [0 x 1073 () f5(x)

Baseline (Non-linear) 1.01 —0.85 116.0 0.2 22.56
LC (simulation #10, Linear uncorrected 342 —5.35 1.71 0.09 20.95
J(x) = 1.76) Linear corrected 0.92 —0.66 109.44 0.17 20.95
Non-linear 091 -0.65 117.5 0.17 20.95

Optimization effect (%) —9.90 —23.53 +1.29 —15.00 —7.14

LC + NMSDS Linear uncorrected 0.06 —0.0709 1.85 0.0016  21.79
(J(x) = 1.64) Linear corrected 0.89 —0.67 112.35 0.17 21.79
Non-linear 0.88 —0.62 118.20 0.18 21.79

Optimization effect (%) —12.87 —27.06 1.90 —10.00 —3.41

increase in the displacement is secondary in view of the improvements observed in the other
responses. Following this idea, if different designs were validated, the choice of a single one
would depend on the analysis of the individual responses. Therefore, the designer can choose
which solution is the most convenient for the current application.

7 Summary and conclusion

In this paper, the use of intensive computing heuristic techniques for the optimal design of
aircraft structural components has been explored. Then (i) the coupling of non-linear high-
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fidelity and linear low-fidelity analyses through the variable fidelity approach; and (ii) the
performance of different heuristic optimization methods have been investigated.
The study allows the following conclusions:

e Variable fidelity approach enabled performing intensive computing heuristic techniques
through the rational use of expensive non-linear analyses and on-line inexpensive linear
analyses.

e The four applied nature-inspired methods converged in the sense of pointing out the same
region of the design space as a candidate to contain the most suitable design.

Finally, it should be pointed out that this contribution successfully demonstrated that heu-
ristic techniques can be used for an initial exploration of the design space with the purpose
of identifying the improvement trends and ruling out the inadequate design choices. In the
sequence, a point-based classical optimization algorithm can refine the design. However, the
final design is only obtained when the validation step of the variable-fidelity approach is
performed. Then, the best design can be chosen by direct comparison of the high-fidelity
responses.
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